The mechanism of Ca2+ regulation of vascular smooth muscle thin filaments by caldesmon and calmodulin.

نویسندگان

  • C W Smith
  • K Pritchard
  • S B Marston
چکیده

The interactions of vascular smooth muscle caldesmon with actin, tropomyosin, and calmodulin were determined under conditions in which the four proteins can form reconstituted Ca2+-sensitive smooth muscle thin filaments. Caldesmon bound to actin in a complex fashion with high affinity sites (K = 10(7) M-1) saturating at a stoichiometry of 1 per 28 actins, and lower affinity sites at 1 per 7 actins. The affinity of binding was increased in the presence of tropomyosin, and this could be attributed to a direct interaction between caldesmon and tropomyosin which was demonstrated using caldesmon cross-linked to Sepharose. In the presence of tropomyosin, occupancy of the high affinity sites was associated with inhibition of actin-activated myosin MgATPase activity. Caldesmon was found to bind to calmodulin in the presence of Ca2+, with an affinity of 10(6) M-1. The binding of Ca2+ X calmodulin to caldesmon was associated with the neutralization of inhibition of actin-tropomyosin. Ca2+ X calmodulin binding reduced but did not abolish the binding of caldesmon to actin-tropomyosin. From this data we have proposed a model for smooth muscle thin filaments in which Ca2+ regulates activity by converting the inhibited actin-tropomyosin-caldesmon complex to the active complexes, actin-tropomyosin-caldesmon-calmodulin X Ca2+ and actin-tropomyosin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ca2+ can control vascular smooth-muscle thin filaments without caldesmon phosphorylation.

The Ca2+-dependent regulation of the activation of myosin MgATPase by vascular-smooth-muscle thin filaments involves caldesmon. This effect may be due to the direct interaction of caldesmon with a Ca2+-binding protein such as calmodulin or phosphorylation of caldesmon by a Ca2+-dependent kinase. I have found that Ca2+ switches on aorta thin filaments in less than 10 s, whereas the caldesmon in ...

متن کامل

Ca2+-calmodulin binding to caldesmon and the caldesmon-actin-tropomyosin complex. Its role in Ca2+ regulation of the activity of synthetic smooth-muscle thin filaments.

We measured the concentration of calmodulin required to reverse inhibition by caldesmon of actin-activated myosin MgATPase activity, in a model smooth-muscle thin-filament system, reconstituted in vitro from purified vascular smooth-muscle actin, tropomyosin and caldesmon. At 37 degrees C in buffer containing 120 mM-KCl, 4 microM-Ca2+-calmodulin produced a half-maximal reversal of caldesmon inh...

متن کامل

Three-dimensional reconstruction of caldesmon-containing smooth muscle thin filaments

Caldesmon is known to inhibit actomyosin ATPase and filament sliding in vitro, and may play a role in modulating smooth muscle contraction as well as in diverse cellular processes including cytokinesis and exocytosis. However, the structural basis of caldesmon action has not previously been apparent. We have recorded electron microscope images of negatively stained thin filaments containing cal...

متن کامل

Ca2+ regulation of the thin filaments: biochemical mechanism and physiological role.

The control of blood flow and blood pressure is primarily a question of the control of the contractility of the smooth muscle cells in blood vessel walls. The contractile machinery of smooth muscle cells is made up of filaments of the contractile proteins myosin (thick filaments) and actin (thin filaments), the interaction of which generates force and shortening at the expense of MgATP hydrolys...

متن کامل

Caldesmon is a Ca2+-regulatory component of native smooth-muscle thin filaments.

Thin-filament preparations from four smooth muscle types (gizzard, stomach, trachea, aorta) all activate myosin MgATPase activity, are regulated by Ca2+, and contain actin, tropomyosin and a 120000-140000-Mr protein in the molar proportions 1:1/7:1/26. The 120000-140000-Mr protein from all sources is a potent inhibitor of actomyosin ATPase activity. Peptide-mapping and immunological evidence is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 262 1  شماره 

صفحات  -

تاریخ انتشار 1987